Lilian Surgeson
 Pythagoras' Theorem Lesson Plan - $3^{\text {rd }}$ March 2011

Lesson Aims:

- Introduce pupils to Pythagoras' Theorem
- Enable pupils to understand why Pythagoras' Theorem works by means of visual proof
- Pupils to develop competence applying Pythagoras' Theorem to calculate the length of the hypotenuse.

Starter - 5 mins

- Calculating the area of a square given the sides, mentally and using a calculator
- Calculating the sides of squares from the given area, mentally and using calculator

Introduction and Explanation - 5 mins

- State/show learning objectives

1. Discover what Pythagoras' Theorem states
2. Understand when it works and why
3. Be able to use it to solve a problem involving a right-angled triangle

- Statement of Pythagoras' Theorem both in words and as an equation.
- Explain conditions for Theorem - must be a right-angled triangle of any size
- Show picture of a right angled triangle labelled a, b, c and explain hypotenuse is longest side and always opposite right-angle.

Examples

- 2 guided examples of how to apply the theorem, one with simple decimals - more if necessary.

Activity - 10 minutes
Task 1 on the worksheet
Pause for marking, assessment.
Brief explanation of
Activity - 10 minutes
Task 2 on the worksheet
Extension - Task 3
Pause for marking
Explanation - Visual Proof - 5 minutes

- Show pupils initial stages of visual proof
- Discuss what how they think we might be able to prove the theorem
- Show pictorial proof
- Discuss sizes of triangles and if this has effect on the theorem

Plenary/Assessment of Learning - 5 minutes
Solve a written problem using pythagoras' theorem.

Exploring Pythagoras' Theorem

Task 1

Calculate the length of the hypotenuse on each of the following triangles, showing all your workings. Give answers to the appropriate number of decimal places.
a)

6 cm
b)

d)

e)
4.3 cm

f)

g)
37 m

h)

1.4 mm

Task 2

Using a sharp pencil and a ruler, draw this triangle to the correct size:

Calculate the length of the hypotenuse and measure it to check your calculations are correct

Then - draw another 3 triangles using measurements of your own choosing, calculate the length of each hypotenuse and measure it to check you are correct.

Task 3

If these triangles are truly right-angled then Pythagoras' Theorem will apply to them. Check each of these triangles.

b) $\quad 1.4 \mathrm{~cm}$
2.1 cm
d)
d) $\underbrace{7}_{7 \text { cm }} \int_{2 \mathrm{~cm}}$

Hint: Use the two shortest sides to calculate the length of the hypotenuse and see if it matches the one given.

