52 May 2012 Solutions.

1. A manufacturer produces sweets of length $L \mathrm{~mm}$ where L has a continuous uniform distribution with range $[15,30]$.
(a) Find the probability that a randomly selected sweet has a length greater than 24 mm .

These sweets are randomly packed in bags of 20 sweets.
(b) Find the probability that a randomly selected bag will contain at least 8 sweets with length greater than 24 mm .
(c) Find the probability that 2 randomly selected bags will both contain at least 8 sweets with length greater than 24 mm .
a)

b)

$$
\begin{aligned}
& X=n 0 . \text { of sweets with } L>24 \\
& \begin{aligned}
& X \sim B(20,0.4) \\
& P(X \geqslant 8)=1-P(X \leqslant 7) \\
&=1-0.4159=0.5841
\end{aligned}
\end{aligned}
$$

c) $(0.5841)^{2}=0.3412(4 d \rho)$
2. A test statistic has a distribution $\mathrm{B}(25, p)$.

Given that

$$
\mathrm{H}_{0}: p=0.5 \quad \mathrm{H}_{1}: p \neq 0.5
$$

(a) find the critical region for the test statistic such that the probability in each tail is as close as possible to 2.5%.
(b) State the probability of incorrectly rejecting H_{0} using this critical region.
a) under $H_{0} \quad X \sim B(25,0.5)$

$$
\begin{aligned}
P(x \leq 7) & =0.0216 \quad c_{1}=7 \\
P(x \leq 8) & =0.0539 \quad \\
P(x \geqslant 18) & =1-P(x \leq 17) \\
& =1-0.9784=0.0215 \\
P(x \geqslant 17) & =1-P(x \leq 16) \\
& =1-0.9461=0.0539
\end{aligned}
$$

Critical region: $x \leq 7, x \geqslant 18$
b) $0.0215+0.0216=0.0431$
3. (a) Write down two conditions needed to approximate the binomial distribution by the Poisson distribution

A machine which manufactures bolts is known to produce 3% defective bolts. The machine breaks down and a new machine is installed. A random sample of 200 bolts is taken from those produced by the new machine and 12 bolts were defective.
(b) Using a suitable approximation, test at the 5% level of significance whether or not the proportion of defective bolts is higher with the new machine than with the old machine. State your hypotheses clearly.
a) n is large
p is small (mean \approx variance)
b) $X=$ no. of defective bolts
$H_{0}: p=0.03 \quad H_{1}: p>0.03$
under $H_{0} X \sim B(200,0.03)$

$$
\begin{aligned}
X & \approx \sim P_{0}(6) \\
P(x \geqslant 12) & =1-P(x \leqslant 11) \\
& =1-0.9799 \\
& =0.0201
\end{aligned}
$$

$0.0201<0.05$ so reject H_{0}
There is evidence that the proportion of defective bolts is higher with the new machine.
4. The number of houses sold by an estate agent follows a Poisson distribution, with a mean of 2 per week.
(a) Find the probability that in the next 4 weeks the estate agent sells,
(i) exactly 3 houses,
(ii) more than 5 houses.

The estate agent monitors sales in periods of 4 weeks.
(b) Find the probability that in the next twelve of these 4 week periods there are exactly nine periods in which more than 5 houses are sold.

The estate agent will receive a bonus if he sells more than 25 houses in the next 10 weeks.
(c) Use a suitable approximation to estimate the probability that the estate agent receives a bonus.

布 $X=$ of houses sold
a) $X \sim P P_{0}(8)$
$P(x=3)=\frac{e^{-8} 8^{3}}{3!}=0.0286$
$P(x>5)=1-P(x \leqslant 5)$

$$
=1-0.1912=0.8088
$$

b) $Y=n 0$. of periods where $X>5$
$y \sim B(12,0.8088)$

$$
P(y=9)=\binom{12}{9}(0.8088)^{9}(0.1912)^{3}
$$

$$
=0.2277
$$

Question 4 continued
c) $X \sim P_{0}(20)$ approximate by $W \sim N\left(20, \sqrt{2} 0^{2}\right)$

$$
\begin{aligned}
P(x>25)=P(x & \geqslant 26) \notin P(W \geqslant 25.5) \\
& =P\left(z \geqslant \frac{25.5-20}{\sqrt{20}}\right) \\
& =P(z \geqslant 1.23) \\
& =1-\Phi(1.23) \\
& =0.1093
\end{aligned}
$$

5. The queueing time, X minutes, of a customer at a till of a supermarket has probability density function

$$
\mathrm{f}(x)=\left\{\begin{array}{cc}
\frac{3}{32} x(k-x) & 0 \leqslant x \leqslant k \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Show that the value of k is 4
(b) Write down the value of $\mathrm{E}(X)$.
(c) Calculate $\operatorname{Var}(X)$.
(d) Find the probability that a randomly chosen customer's queueing time will differ from the mean by at least half a minute.
a)

$$
\begin{aligned}
& \int_{0}^{k} \frac{3}{32} x(k-x) d x=1 \\
& \frac{3}{32} \int_{0}^{k}\left(k x-x^{2}\right) d x=1 \\
& \frac{k}{3}\left[\frac{k x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{4}=\frac{32}{3}
\end{aligned}
$$

$$
\frac{k^{3}}{2}-\frac{k^{3}}{3}=\frac{32}{3}
$$

$$
\frac{k^{3}}{6}=\frac{32}{3}
$$

$$
k^{3}=64
$$

$$
h=4
$$

Question 5 continued
b)

$$
E(X)=2
$$

c)

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{0}^{4} \frac{3}{32} x^{3}(4-x) d x \\
& =\frac{3}{32}\left[x^{4}-\frac{x^{5}}{5}\right]_{0}^{4} \\
& =\frac{3}{32}\left[256-\frac{1024}{5}\right] \\
& =\frac{24}{5} \\
\operatorname{Var}(X) & =\frac{24}{5}-2^{2}=0.8
\end{aligned}
$$

d)

$$
\begin{aligned}
2 \int_{0}^{1.5} \frac{3}{32} x(4-x) d x & =\frac{3}{10}\left[2 x^{2}-x^{3} / 3\right]_{0}^{1.5} \\
& =\frac{3}{16} \times \frac{27}{8}=\frac{81}{128}
\end{aligned}
$$

