6. A bag contains a large number of balls.
65% are numbered 1
35% are numbered 2
A random sample of 3 balls is taken from the bag.
Find the sampling distribution for the range of the numbers on the 3 selected balls.
Possible samples:

$$
(1,1,1) \quad \text { range }=0 \quad p=0.65^{3}=\frac{2197}{8000}
$$

$$
(1,1,2)(1,2,1)(2,1,1) \text { range }=1
$$

$$
P=3(0.65)^{2}(0.35)
$$

$$
=\frac{3549}{8000}
$$

$(1,2,2)(2,1,2)(2,2,1) \quad$ range $=1$

$$
\begin{aligned}
p & =3(0.65)(0.35)^{2} \\
& =\frac{1911}{8000}
\end{aligned}
$$

$(2,2,2) \quad$ range $=0 \quad p=0.35^{3}=\frac{343}{8000}$
Sampling Dist

R	0	1
$P(R=r)$	$\frac{127}{400}$	$\frac{273}{400}$

7. The continuous random variable X has probability density function $\mathrm{f}(x)$ given by

$$
\mathrm{f}(x)=\left\{\begin{array}{cc}
\frac{x^{2}}{45} & 0 \leqslant x \leqslant 3 \\
\frac{1}{5} & 3<x<4 \\
\frac{1}{3}-\frac{x}{30} & 4 \leqslant x \leqslant 10 \\
0 & \text { otherwise }
\end{array} .\right.
$$

(a) Sketch $\mathrm{f}(x)$ for $0 \leqslant x \leqslant 10$
(b) Find the cumulative distribution function $\mathrm{F}(x)$ for all values of x.
(c) Find $\mathrm{P}(X \leqslant 8)$.

b) $\int \frac{x^{2}}{45} d x=\frac{x^{3}}{135}+c_{1}$

When $x=0 \quad F(x)=0 \Rightarrow c_{1}=0$

Question 7 continued

$$
\int 1 / 5 d x=x / 5+c_{2}
$$

When $x=3 \quad F(3)=\frac{3^{3}}{135}=1 / 5$
also $3 / 5+c_{2}=1 / 5 \Rightarrow c_{2}=-2 / 5$

$$
\int\left(\frac{1}{3}-x / 30\right) d x=\frac{x}{3}-x^{2} / 60+c_{3}
$$

when $x=10 \quad F(10)=1 \Rightarrow 10 / 3+\frac{100}{60}+c_{3}=1$

$$
c_{3}=-2 / 3
$$

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{x^{3}}{135} & 0 \leq x \leq 3 \\ \frac{x}{5}-\frac{2}{5} & 3<x<4 \\ \frac{x}{3}-\frac{x^{2}}{60}-\frac{2}{3} & 4 \leq x \leq 10 \\ 1 & x>10\end{cases}
$$

c) $P(X \leq 8)=F(8)=\frac{8}{3}-\frac{64}{60}-\frac{2}{3}=\frac{14}{15}$
8. In a large restaurant an average of 3 out of every 5 customers ask for water with their meal.

A random sample of 10 customers is selected.
(a) Find the probability that
(i) exactly 6 ask for water with their meal,
(ii) less than 9 ask for water with their meal.

A second random sample of 50 customers is selected.
(b) Find the smallest value of n such that

$$
\mathrm{P}(X<n) \geqslant 0.9
$$

where the random variable X represents the number of these customers who ask for water.
a) $X=$ no. of customers asking for water

$$
X \sim B(10,0.6)
$$

I) $P(X=6)=\binom{10}{6} 0.6^{6} 0.4^{4}=\underline{0.2508}$
II) $y=$ no. of customers not ashing for water $Y_{\sim}(x(10,0.4)$

$$
\begin{aligned}
& P(x<9)=P(x \leq 8)=P(y \geq 2) \\
&=1-P(y \leqslant 1) \\
& {\left[\begin{array}{cc}
o r & d o p(x=9)+P(x=10) \\
=10(0.6)^{a}(0.4)+0.6^{10} \\
=0 & =1-0.0464 \\
=0.04635 \\
1-A N S=0.9536
\end{array}\right] }
\end{aligned}
$$

Question 8 continued
b)

$$
\begin{gathered}
P(x<n) \geqslant 0.9 \\
P(x \leqslant n-1) \geqslant 0.9 \\
P(y \geqslant 50-(n-1)) \geqslant 0.9 \\
P(y \geqslant 51-n) \geqslant 0.9 \\
1-P(y \leqslant 50-n) \geqslant 0.9 \\
0.1 \geqslant P(y \leqslant 50-n)
\end{gathered}
$$

when $Y \sim B(s 0,0.4)$ the first prob $\leqslant 0.1$ is $x=15 \quad p=0.0955$

$$
\begin{aligned}
\therefore 50-n & =15 \\
n & =35
\end{aligned}
$$

